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AbstracLThe feasibility ofcomputer simulation ofelectronicrelaxation at asemiconductor- 
vacuum interface under a strong electric field is demonstrated. A kinetic description of 
conduction band electrons in a space-charge region layer with a self-consistent electric field 
underelectron-impurityandelectron-phononscatteringisdeveloped by the particle method 
and Monte Carlo procedure. Results for the transient electronic process in a semiconductor 
field emitter are given. 

. 

1. Introduction 

This work deals with the investigation oftheelectron transport through the space-charge 
region (sCR) of the semiconductor field emitter under conditions of field emission. 
Electron field emission from semiconductors arises because the electron tunnels through 
the potential barrier at the crystal-vacuum interface and it is governed by the electric 
field strength as well as by the crystal volume parameters. 

Electron fieldemission fromsemiconductors has beendescnbedin[l]. Electron field 
emission from GaAs crytals has been observed since 1969 [2] and subsequently some 
experimental work has been devoted to the investigation of field emission from GaAs 
crystals [3-5]. 

The theory of field emission from semiconductors developed by Stratton [6,7] is 
based on the ‘zero-current’ approximation which implies thermodynamic equilibrium 
of the electron energy distribution. This approximation is valid when the emission 
current is not very strong. The current-voltage characteristic of the field emitter in the 
logarithmiccoordinates of the current against inverse voltage isastraight line. The value 
of the tunnelling current density depends on the type of crystal, the concentration of 
ionized donors (or acceptors) and the radius of the emitter tip. The maximum value of 
current density may be variated from lO-’A cm” up to 1 8, cm-’. When the electric 
field rises, the current-voltage characteristic diverges from the straight line. In our 
opinion, a deviation from thermodynamic equilibrium arises and Stratton’s theory 
becomes invalid. To describe the case of strong emission current it is necessary to 
consider the non-equilibrium electron transport through the sCR. 
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The SCR thickness under the conditions of interest is comparable with the relaxation 
lengths of the electron momentum and energy. This provides the possibility that sub- 
stantially non-equilibriumprocessesoccur. Therefore the kineticapproach must be used 
for adequate description of the process under investigation. 

Computer simulation of the transitional processes in semiconductors by means of 
the kinetic model gives correct results when the particle method is used. The main idea 
of the particle method is the replacement of a very large number of real electrons by a 
countable set of the model macroparticles. These particles move according to the laws 
of classical mechanics in a self-consistent electric field. The three-dimensional character 
of electron scattering in momentum space and the details of the energy band structure 
are also taken into account. 

According to this method the dynamical properties of a system of model particles 
are similar to the properties of conduction band electrons [8 ] .  This equivalence is 
provided by the identity of e/m ratio anddispersion lawof both real and model particles. 
Thereforeit is possible to investigate the realelectronsystem by observing the behaviour 
of the model system of macroparticles. 

The particles move in the SCR which is bounded by the crystal surface and by the 
volume of the crystal. The escape of particles through the potential barrier into vacuum 
and their injection from the volume of the crystal are described by special boundary 
conditions proposed by us for the case of field emission. On the basis of these boundary 
conditions the simulation procedure is developed, which provides the possibility of 
investigating the non-equilibrium phenomena taking place under the heavy current. 

The kinetic approach to field emission from semiconductors was put forward in our 
previous paper 191, where the particle method was used for the numerical simulation of 
the transitional processes in the SCR of a semiconductor field emitter under various 
conditions. It was shown that non-equilibrium processes must be taken into account in 
field emission investigations. 

In the present paper the main attention is paid to the details of the distribution 
function of electrons in the substantially non-equilibrium regime. In addition, the 
modification of the particle method for the case of motion in the surface potential well 
isdescribed; thisallows us todevelopafaster algorithm than that of theordinary method. 

The choice of a GaAs field emitter as the object of the study is explained by its 
application in fast-response microelectronic devices. 

2. Formulation of the problem 

Let us consider theone-dimensional model of the near-surface region of a semiconductor 
under a strong electric field. The energy diagram of semiconductor field emitter is 
representedin figure 1, where the potential profile ofthe bottomof theconduction band 
is shown. The sample is placed at z > 0. To the left of the semiconductor-vacuum 
jnterface a potential barrier exists. Its shape can be approximated with allowance for 
the image-charge forces by the expression 

@(Z) = l# - eE,Z 'r (K + 1)/(K - 1)(e2/4z) (1) 
where $1 is the electron affinity, K the dielectric constant, E, the applied electric field 
strength and e the electron charge. 

The kinetic description implies that the electron system is described by means of the 
distribution functions. Since the GaAs conduction band has three valleys, there are 
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Figure 1. Energy diagram of a semiconductor field 
emitter: 1, vacuum; 11,semiconductorsurface region 
(region ofcalculation); I l l .  semiconductor bulk. 

three types of electron which correspond to the r, L and X points of the electron energy 
minima. Each type of electron is described by the corresponding distribution function 
A, i = r, L, X. The distribution functions are governed by the system of Boltzmann 
kinetic equations 

where E is the self-consistent electric field strength which is found from the equation 

where Si are the collision integrals and ND is the ionized donor concentration. A model 
developed by Kein [lo] is used as a dispersion law: 

~ ~ ( 1  + =p2/2mi  (4) 
where mi is the electron effective mass at the bottom of the i valley, mi is the non- 
parabolic parameter, and ei andp are the electron energy and momentum, respectively. 
The collision integrals Si are the linear functional of the distribution functions. They can 
be written in the form 

where S(l).f[J] and S(2) , f [h . ]  describe the depopulation and population, respectively, of 
the electron state with momentum p as a result of scattering of the electrons of the i (i') 
type by means of an [scattering mechanism with their transformation into the i' (i) type. 
Then 

SC1'"[fiI = At,i,(p)fi(p) 

S(*) . ' [ f i . ]  = /f,.(p)Wi,.i(pf,p, cos B)G[&i.(p') - ~ , ( p )  + Ai.i,]dp' 

Ali.(p) = W:,i,@,p',cos - ~ ~ ' ( p ' )  - Ai .<]  dp' 
(6) 

= 1 w ~ , ~ .  (p, cos 0) d(cos 0) dq, 
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where W,,?(p,p’, cos e) is the probability of electron transition from the i‘-type valley 
to the i-type valley as a result of the scattering by means of the I mechanism, 
W { . ~ ( P .  cos 6 )  is the angulpr dependence of the scattering probability of electron with 
momentum equal top.  A , , i f  is the energy difference between the final and the initial 
states of the scattered electron equal to the corresponding phonon energy, and p? is the 
azimuth. 

I n  the collision integrals the following processes are taken into account: intra-valley 
scattering by the ionized impurities, acoustical phonons and optical phonons, inter- 
valley transitions with absorption and emission of an inter-valley phonon (transitions 
with absorption and emission of a phonon are assumed to be different) [8]. 

To complete the formulation of the problem, it  is necessary to specify boundary 
conditions for the distribution functions and for the electric field potential. The region 
being investigated is bounded from the left-hand side by the semiconductor-vacuum 
interface at z = 0. The electron escape through the potential barrier into the vacuum is 
determined by the transparency coefficient D(p,) calculated from the Schrodinger 
equation. 

For the distribution functions of electrons with momentap, > 0 at z = 0 we have 

V E G h e m  et al 
I 

Ji@zqPy,PzrO=[l - o @ ~ ) l f , @ x , ~ y r - ~ i r t ) .  (7) 

Theelectricfieldstrengthat z = Oisdetermined by theconditionoftheelectricinduction 
vector normal component continuity: 

E(0)  = E,/K.  (8) 

The right-hand boundary of the region under investigation ischosen to be far enough 
from the surface that the electron concentration is equal to that in the volume of the 
sample. Therefore theelectron distribution functionson the boundary are equal to those 
in the volume and their spatial gradients are equal to zero. So the distribution functions 
of the electrons with momentap, < 0 on the right-hand boundary are determined from 
the set of Boltzmann kinetic equations in which the terms including the spatial gradients 
are omitted: 

aJ,/at - eE afi/ap =Si i E r, L,X.  (9) 

The initial state of the system to be investigated is the state of thermodynamic 
equilibrium between the electron gas and the lattice. So the spatial distribution of the 
electric field potential @ ( E )  (which is connected with the electrjc field strength E(r )  by 
the relation d@/dr = cE)  is obtained from solution of a self-consistent problem: 

d2@(z)/dzz = - (4ae2ND/~)(exp[-~(z) /kT]  - 1) 
(10) 

d@(z)/dzzm0 = eE& @ ( z )  + 0 Z’X. 

The initial electron distribution function is taken in the form of the local Maxwellian 
distribution function 

J b ,  2) = ND ex~[-@(z)/kTl J o b )  (11) 

where Jo(p) is the Maxwellian distribution function, k is the Boltzmann constant and T 
is temperature. 
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3. The numerical simulation procedure 

According to the particle method, the electron gas is represented in a one-dimensional 
coordinate space as an ensemble of flat sheets, infinite in two dimensions, with the 
homogeneously distributed charge and mass, their dynainics being identical with those 
of real electrons [SI. These particles move in the self-consistent electric field which is 
determined taking into account the distribution of charged particles in the region. 
The interaction of particles with the lattice is described by considering the scattering 
processes. The macroparticle method includes a standard Monte Carlo procedure; it is 
one of the variants of the many-particle Monte Carlo method. The simulation of the 
particle scattering on the impuritiesand the lattice oscillations and definingof the particle 
energy and momentum after the scattering act is performed by means of the ordinary 
Monte Carlo technique [ I l l .  

In intervals between scatterings the particles obey classical mechanics laws. With 
allowance for a dispersion law (4) the equations of motion are of the form 

dz,(O/df = pZ(4'mi[l + 2ai &,(f)l  
dp,(f)/df = -eE[z i ( t ) ]  (12) 

~ , ( f ) [1  + a i ~ , ( f ) l =  b j ( 0 l 2 / 2 m i  

where p x  and E are momentum and energy of a macroparticle. mi and a, are the mass 
and non-parabolicity parameters of the i-type macroparticle, and j is the macroparticle 
number. To describe the spatial distributions of the electric field, particle concentration 
and other characteristics the empirically chosen spatial grid is introduced, refining the 
mesh spacings in the near-surface region where high gradients of carrier concentration 
electrostatic potential are expected. The ordinary simulation procedure of the time 
evolution of a system is as follows [9] .  

The time step T which is the time interval between two consequent moments of 
electric field correction is introduced. During T the electric field is assumed to be 
unchangeable. Let us suppose that the coordinates and momenta of every macroparticle 
as well as the electric field distribution are known at the time 1 .  For each macroparticle 
the following procedure is performed. A free-flight time z, is selected stochastically in 
accordance with given scattering probabilities: 

T, = -ri In 5 (13) 
where f is a random number in [0, I] and r is the total scattering probability (the 
probability that a macroparticle suffers a scattering during the time df) including a 
fictitious 'self-scattering' which does not change a particle momentum as if no scattering 
at all takes place. The introduction of self-scattering simplifies the procedure of free- 
flight time selection and significantly reduces the computer time [lo]. Generally it is 
sufficient that risnot lessthanthemaximumvalueofthe totalrealscatteringprobability. 

When the tl obtained is greater than z, the coordinate and momentum of a 
macroparticle at the time f + z are obtained by numerically solving the equations of 
motion (12) and the time step for this macroparticle is completed. In the opposite case, 
when the 5 ,  obtained is less than T, the coordinate and momentum of a macroparticle 
are calculated from (12) at the time f + r l ;  then the scattering event is simulated. The 
type of scattering is selected according to the relative weight of the various processes 
included in the model and a new momentum is selected in accordance with agiven angular 
dependence of the differential cross-section of the particular scattering mechanism 
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(wi,,(p, cos e) in (6) ) ,  Then the new free-flight time zz  is randomly chosen as described 
above and compared with the remaining part of the time step equal to r - 5,. If 
r 2  > T - r , ,  a particle is shifted in accordance with (12) in the time scale by the time 
interval z - r , ;  otherwise it is shifted by the time interval T~ with subsequent scattering. 
The procedure is repeated until the particle reaches the moment I + r. 

When the procedure described is completed for every macroparticle, update of the 
electric field distribution must take place. 

To perform the new distribution of electric field the electric charge distribution is 
obtained from the known distribution of macroparticle coordinates. When this is done 
the electric field strength is found from the equation 

dE/dz = -(4ne/lc)n(r) + (4ne/lc)ND (14) 
where en(z) is the electric charge distribution. 

The penetration of electrons through the potential barrier to the surface is simulated 
by means of a probability procedure as follows: a macroparticle incident on the barrier 
with momentum p is back-scattered with probability 1 - D ( p , )  and with probability 
D(pJ it is removed from the ensemble of the calculated macroparticles. 

The injection of particles into the region being calculated from the volume of the 
sample issimulated by specifying the 'periodic' boundary conditions in the furthest-right 
computational cell of the space mesh; when a particle on its way to the surface leaves 
the outermost cell, a new particle of the same type and momentum is generated on the 
opposite border of the cell. Here the particle distribution function in the outermost cell 
corresponds to the solution of a set of Boltzmann equations (9) under the assumption 
that there is no distribution function space gradient. It should be stressed that such an 
approach to the simulation of particle injection takes into account the fact that the 
particle gas is heated by the electric field penetrating into the volume of the sample. 

To provide accuracy of computations it is necessary to choose the time step z to 
satisfy certain conditions. Firstly, the temporal variation in the electric field during the 
time step r must satisfy the condition 

r < T ,  (15) 

where T,, is the period of plasma oscillations. Secondly, the spatial variation in the 
electric field through the spatial segment passed by particle during the time step T must 
be small too: 

T < h/u  (16) 
where v is the macroparticle velocity and h is the distance along which the field changes 
considerably; it can be estimated as a step of the spatial grid. When large field gradients 
exist inside the region, it is necessary to specify a very small spatial step h.  In such a case 
the condition (16) may be stronger than (15). The time step r is reduced as it  is 
proportional to h and the simulation time increases. 

So theordinary macroparticlemethodin the presenceoflarge field gradients becomes 
very time consuming. It should be noted, however, that the motion of particles in the 
near-surface potential well has an oscillatory character. Taking this fact into account it 
becomes possible to construct a more effective algorithm. 

If the Free-flight time is greater than the time interval between two consequent 
particle reflections from the walls of the potential well, there is no need to repeat the 
calculation for each oscillation. A more successful method is as follows. When the first 
oscillation is calculated, it becomes possible to estimate the amount of oscillations by 
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dividing the free-flight time by the period of oscillation. Then the time equal to the 
number of oscillations multiplied by the period is subtracted from the remaining time of 
the free fight and the ordinary procedure completes thc time step. The probability of 
tunnelling must be modified: 

f(N) = 1 - (1 - D)N (17) 

where N is the number of oscillations. 
The simulation procedure according to the algorithm described above is much more 

effective than the ordinary method in the case of a narrow potential well. 
During the simulation process it  is possible to observe the time evolution of a system 

as well as the average values of physical quantities of interest, such as the drift velocity 
and the mean energy, by calculating the ensemble average over all particles of the 
system. In particular, the distribution function is proportional to the number of particles 
n(p,  I, t )  Ap Az that at time tare found to be in a coordinate-momentum cell of fixed 
volume Araroundzand Ap aroundp. Whenastablestateisinvestigated, wecanobtain 
the time average of a physical quantity. 

In the present paper the simulation is performed for an n-type GaAs emitter at 
the temperature T = 300 K. Parameters for the GaAs band structure and scattering 
mechanisms were taken from [12]. Typical values of the computational model par- 
ameters used are as follows: particle number, up to 10 000; number of grid points in the 
spatial grid, of the order of 100. 

4. Results and discussion 

The main purpose of the paper is the investigation of non-equilibrium processes under 
the conditions of a large electric field and a large electron concentration gradient. The 
series of simulations has been performed with different values of electric field strengths 
Es, from 3.5 x lO'to 4.0 x lo7 V cm-'. As can be seen from the results of simulations, 
sucharangeofelectricfieldvariationscorrespondstoavariationin theemitteroperation 
regime from complete equilibrium to strong non-equilibrium. So, when E, = 
3.5 % lo7 Vcm-'the charge transfer process through the sCR is equilibrium. The outer 
electric field almost does not penetrate to the bulk of the sample and the heating of the 
electron gas does not take place. All the electrons are in the r valley and their energy 
distribution function has an equilibrium form. The emission process in this case is fully 
described by Stratton's [6,7] equilibrium theory. The escape of electrons from the SCR 
due to tunnelling is fully compensated by their influx from the bulk. 

The electric field increase leads to a surface potential barrier thickness decrease and 
hence to an increase in the transparency coefficient D. The tunnelling current increases. 
To compensate the electron escape from the SCR the bulk current has to increase. 
However, the field dependence of the electron drift velocity through the GaAs sample 
has a saturation region [12]. Therefore, after the saturation current is achieved, the 
influx of electrons from the bulk cannot compensate their disappearance. It leads to 
reduction in the SCR full charge and to violation of the outer field shielding conditions. 
The electricfieldpenetratesdeeply into the semiconductor volume and heats theelectron 
gas. A saturation region appears in the current-voltage curve. This is explained by the 
drift velocity saturation in the semiconductor bulk. 
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Figure 2. The spatial distribution of the electron’s mean kinetic energy for different external 
electric field strengths: (a) r valley, curve A 3.5 X IO’ Vcm-’; curve E. 3.7 X 10’ Vcm-’; 
curveC.3.8 x 10’V~m~~;curveD.3 .9  x lO’Vcm-’; (b)  Lvdlley.3.9 X 10’Vcm-’. 

Figore 3. The relative occupation N J N x  of the L 
valley. 

Figure 1. The potential profile @ ( I )  in the SCR at a 
held strength €,of 3.9 X IO’V cm-’ and the electric 
field profile E ( r )  in the s a .  

In figures 2(u) and 2(b) the spatial distributions of the mean electron kinetic energy 
for different strengths of external electric field are represented for the r valley and for 
the L valley, respectively. Figure 2(a) shows that a small change in the external electric 
field value leads to substantial heating of the electron gas followed by the operation 
regime change from quasi-equilibrium to non-equilibrium. 

As can be seen from the electron temperature distributions the electron’s mean 
kinetic energy in the volume differs from its equilibrium value and rises towards the 
surface. The maximum of the electron’s mean kinetic energy is located at a distance of 
(0.3-0.5)rD (where rD is the Debye radius) from the surface. The relative occupancy of 
the L valley also has a maximum and its location coincides with the location of the 
electron’s maximum temperature (Figure 3). The features noted may be explained by 
the existence of two slightly interacting electron subsystems in the near-surface region: 

(1) a subsystem almost in equilibrium described by a Maxwell distribution function 
with temperature equal to the lattice temperature; 

(2) a strongly non-equilibrium subsystem formed by electrons coming from the 
volume. 

The interaction between these occurs by exchange of electrons as a result of electron 
scattering. The interaction weakness is provided by the small size of the SCR compared 
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Figure 5. The electron’s energy distribution function at different distances from the surface: 
( a )  r valley; ( 6 )  L valley. 

with the electron energy relaxation length (if ND = l O ” ~ m - ~ ,  then rD = 10-6cm and 
1, = cm). 

The electron density distribution of the equilibrium subsystem is strongly non- 
uniform and has a sharp maximum on the surface; therefore the mean values near the 
surface are close to their equilibrium values. Far from the surface where the electron 
concentrations of the two subsystems are comparable the mean values are determined 
by taking into account the existence of both electron groups. 

In figure 4 the potential profile and the spatial distribution of the electric field in the 
SCR at an external field strength E, of 3.9 X lo7 V cm-’ are plotted. It corresponds to the 
strong penetration of the external electric field into the sample volume. 

The electron’s energy distribution functions at different distances from the surface 
for the r valley and L valley are shown in figures 5(a) and 5(b) ,  respectively. The 
distribution function width at a distance 05, is greater than at other distances; this 
corresponds to the location of the electron’s mean maximum kinetic energy. 

In conclusion we note that mathematical modelling of semiconductor devices on the 
basis of a kinetic description is a powerful tool for investigating physical processes. 
It permits us to investigate such detailed characteristics as the valley distribution of 
electrons, the spatial dependencesof temperatures, the concentrations and other values 
which cannot be measured directly. 
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